Search results for "Purkinje Cells"

showing 9 items of 9 documents

Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

2003

Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons1,2. Several groups have attributed this apparent plasticity to ‘transdifferentiation’3,4,5. Others, however, have suggested that cell fusion could explain these results6,7,8,9. Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resul…

Cell typeCell signalingBone Marrow CellsBiologyBioinformaticsGiant CellsModels BiologicalCell FusionMicePurkinje CellsmedicineAnimalsMyocyteMyocytes CardiacProgenitor cellBone Marrow TransplantationMultidisciplinaryCell fusionStem CellsTransdifferentiationCell DifferentiationCell cycleCell biologyMice Inbred C57BLmedicine.anatomical_structureHepatocytesBone marrow
researchProduct

The angiopoietin-Tie2 pathway regulates Purkinje cell dendritic morphogenesis in a cell-autonomous manner.

2021

Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie…

CerebellumalphaCytoskeleton organizationAngiogenesisPurkinje cellprotocadherinsMorphogenesisneural progenitor cellsMice Transgenicself-avoidanceBiologyModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyAngiopoietinAngiopoietin-2Purkinje Cellsddc:570CerebellumexpressionGene expressionmedicineAngiopoietin-1MorphogenesisAnimalsmouseMice KnockoutIntegrasessubventricular zonedifferentiationDendritesmtorc2Angiopoietin receptorReceptor TIE-2Cell biologyMice Inbred C57BLmedicine.anatomical_structuremessenger-rnaGene Expression RegulationOrgan Specificityembryonic structurescardiovascular systembiology.proteinGene DeletionSignal TransductionCell reports
researchProduct

Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor γ2 Subunit in the …

2016

Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABAA receptors. In recombinant receptors and genetic mouse models their actions depend on the α, β, and δ subunits of the receptor, especially on those that form extrasynaptic GABAA receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched γ2 subunit-containing receptors and even on αβ binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5β-pregnan-3α-ol-20-one is altered in genetically engineered mouse models that have deficient GABAA receptor-mediated synaptic inhibition in selected neuro…

0301 basic medicineGAMMA-2-SUBUNITCerebellumNeuroactive steroidcerebellumDISORDERSPurkinje cellINHIBITIONBiologyPharmacologyGABAA-rho receptor03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCRE RECOMBINASE EXPRESSIONmedicinePharmacology (medical)Pharmacology & PharmacyReceptorPARVALBUMIN-POSITIVE INTERNEURONSIN-VIVOOriginal ResearchPregnanolonePharmacologyScience & TechnologyGABAA receptorAllopregnanolonelcsh:RM1-950POINT MUTATIONA RECEPTORS3. Good health030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacologychemistrynervous systemPurkinje cellsALLOPREGNANOLONEextrasynaptic GABAA receptorsmotor performance1115 Pharmacology And Pharmaceutical Sciences3111 BiomedicineneurosteroidsLife Sciences & Biomedicine030217 neurology & neurosurgeryextrasynaptic GABA(A) receptors
researchProduct

Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy

2016

The specialised conducting tissues present in the ventricles are responsible for the fast distribution of the electrical impulse from the atrio-ventricular node to regions in the subendocardial myocardium. Characterisation of anatomical features of the specialised conducting tissues in the ventricles is highly challenging, in particular its most distal section, which is connected to the working myocardium via Purkinje-myocardial junctions. The goal of this work is to characterise the architecture of the distal section of the Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a segmentation of Purkinje fibres at cellular scale, and mathematically describin…

0301 basic medicineConfocal Microscopylcsh:Medicine030204 cardiovascular system & hematologylaw.inventionPurkinje Cells0302 clinical medicineAnimal CellslawMedicine and Health SciencesMyocyteSegmentationlcsh:ScienceMammalsMicroscopyMicroscopy ConfocalMultidisciplinaryLight MicroscopyHeartAnimal ModelsAnatomyVertebratesRabbitsCellular TypesAnatomyElectrical conduction system of the heartNetwork AnalysisResearch ArticleComputer and Information SciencesCell typeCardiac VentriclesHeart VentriclesMuscle TissueBiologyResearch and Analysis MethodsImaging data03 medical and health sciencesImaging Three-DimensionalModel OrganismsHeart Conduction SystemConfocal microscopyAnimalsComplex network analysisMuscle CellsMyocardiumlcsh:ROrganismsBiology and Life SciencesCell BiologyWheat germ agglutininBiological Tissue030104 developmental biologyAmniotesCardiovascular Anatomylcsh:QEndocardiumBiomedical engineeringPLOS ONE
researchProduct

Purkinje cell loss and motor coordination defects in profilin1 mutant mice.

2012

Profilin1 is an actin monomer-binding protein, essential for cytoskeletal dynamics. Based on its broad expression in the brain and the localization at excitatory synapses (hippocampal CA3-CA1 synapse, cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse), an important role for profilin1 in brain development and synapse physiology has been postulated. We recently showed normal physiology of hippocampal CA3-CA1 synapses in the absence of profilin1, but impaired glial cell binding and radial migration of cerebellar granule neurons (CGNs). Consequently, brain-specific inactivation of profilin1 by exploiting conditional mutants and Nestin-mediated cre expression resulted in a cerebellar hyp…

CerebellumPatch-Clamp TechniquesPurkinje cellBiophysicsAction PotentialsParallel fiberMice TransgenicNerve Tissue ProteinsBiologyHippocampal formationIn Vitro TechniquesMotor ActivitySynapseNestinMiceProfilinsPurkinje CellsIntermediate Filament ProteinsmedicineAnimalsGeneral NeuroscienceAge FactorsBrainGene Expression Regulation DevelopmentalLong-term potentiationElectric StimulationDisease Models Animalmedicine.anatomical_structurenervous systemCytoarchitectureAnimals NewbornCerebellar cortexMutationDisease ProgressionPsychomotor DisordersNeuroscienceNeuroscience
researchProduct

Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool

2008

Cerebellar granule cell precursors (GCPs), which give rise to the most abundant neuronal type in the mammalian brain, arise from a restricted pool of primary progenitors in the rhombic lip (RL). Sonic hedgehog (Shh) secreted by developing Purkinje cells is essential for the expansion of GCPs and for cerebellar morphogenesis. Recent studies have shown that the primary cilium concentrates components of Shh signaling and that this structure is required for Shh signaling. GCPs have a primary cilium on their surface [Del Cerro, M.P., Snider, R.S. (1972). Studies on the developing cerebellum. II. The ultrastructure of the external granular layer. J Comp Neurol 144, 131-64.]. Here, we show that 1)…

CerebellumKinesinsReceptors G-Protein-CoupledMicePurkinje Cells0302 clinical medicinePrimary ciliaCerebellumSonic hedgehogPromoter Regions GeneticRhombic lipGenetics0303 health scienceseducation.field_of_studyCiliumStem CellsSonic hedgehogjoubert syndromeCerebellar developmentSmoothened ReceptorCell biologyneurogenesismedicine.anatomical_structurecerebellar developmentembryonic structuresanimal structuresNeurogenesisPopulationMice TransgenicBiologyKif3aArticle03 medical and health sciencessonic hedgehogprimary ciliaJoubert syndromeGlial Fibrillary Acidic ProteinmedicineAnimalsHumansKIF3AHedgehog ProteinsCiliaeducationMolecular Biology030304 developmental biologyCell BiologyGranule cellMice Inbred C57BLbiology.proteinSmoothened030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Cell expression of GDAP1 in the nervous system and pathogenesis of Charcot-Marie-Tooth type 4A disease

2007

Abstract Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate pheno-types. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neu…

Nervous systemCMT4A mutations and pathogenesisPathologymedicine.medical_specialtyperipheral neuropathyCharcot-Marie-Tooth type 4A diseaseMutation MissenseGene ExpressionImages in Cellular / Molecular MedicineNerve Tissue ProteinsGDAP1MitochondrionBiologymedicine.disease_causeNervous SystemPathogenesisMicePurkinje CellsCharcot-Marie-Tooth DiseaseInterneuronsGanglia SpinalChlorocebus aethiopsmedicineAnimalsHumansNeurons AfferentCells CulturedMotor NeuronsMutationfusion and fission pathwayPyramidal CellsCell Biologymedicine.diseaseSpinal cordImmunohistochemistrymitochondrial dynamicsCell biologyOlfactory bulbRatsmedicine.anatomical_structurePeripheral neuropathynervous systemAnimals NewbornSpinal CordCOS CellsMolecular MedicineNeuronHeLa CellsJournal of Cellular and Molecular Medicine
researchProduct

Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig

2018

Purkinje cells (PCs) are more resistant to ischemia than myocardial cells, and are suspected to participate in ventricular arrhythmias following myocardial infarction (MI). Histological studies afford little evidence on the behavior and adaptation of PCs in the different stages of MI, especially in the chronic stage, and no quantitative data have been reported to date beyond subjective qualitative depictions. The present study uses a porcine model to present the first quantitative analysis of the distal cardiac conduction system and the first reported change in the spatial distribution of PCs in three representative stages of MI: an acute model both with and without reperfusion; a subacute …

0301 basic medicineCritical Care and Emergency MedicineSwinemedicine.medical_treatmentMyocardial InfarctionInfarction030204 cardiovascular system & hematologyPathology and Laboratory MedicineVascular MedicinePurkinje Cells0302 clinical medicineAnimal CellsIschemiaMedicine and Health SciencesTissue DistributionMyocardial infarctionNeuronsCardiomyocytesMultidisciplinaryQRHeartInfarctionDisease ProgressionCardiologyMedicineCellular TypesAnatomyElectrical conduction system of the heartResearch Articlemedicine.medical_specialtyHistologyScienceCardiologyMuscle TissueIschemiaMyocardial Reperfusion InjuryCatheter ablation03 medical and health sciencesSigns and SymptomsHeart Conduction SystemDiagnostic MedicineInternal medicinemedicineAnimalscardiovascular diseasesEndocardiumMuscle Cellsbusiness.industryBiology and Life SciencesCell Biologymedicine.diseaseElectrophysiologyBiological Tissue030104 developmental biologyVacuolizationCellular NeuroscienceReperfusionCardiovascular AnatomyNerve NetbusinessEndocardiumNeuroscience
researchProduct

Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in nor…

2005

Connections between the cerebellum and the contralateral motor cortex are dense and important, but their physiological significance is difficult to measure in humans. We have studied a group of 10 healthy subjects to test whether a modulation of the excitability of the left cerebellum can affect the excitability of the contralateral motor cortex. We used repetitive transcranial magnetic stimulation (rTMS) at 1 Hz frequency to transiently depress the excitability of the left cerebellar cortex and paired-pulse TMS testing of intracortical inhibition (ICI) and intracortical facilitation (ICF) to probe the excitability of cortico-cortical connections in the right motor cortex. The cortical sile…

AdultMaleCerebellumTMS Cerebellum Motor cortex Motor evoked potentialsmedicine.medical_treatmentbehavioral disciplines and activitiesSynaptic TransmissionMotor evoked potentialsFunctional LateralityNOCerebellar CortexPurkinje CellsCerebellum; Motor cortex; Motor evoked potentials; TMS;Reference ValuesCerebellumNeural PathwaysmedicineReaction TimeHumansEvoked PotentialsSettore M-PSI/02 - Psicobiologia E Psicologia Fisiologicamusculoskeletal neural and ocular physiologyGeneral NeuroscienceInterstimulus intervalMotor CortexNeural InhibitionEvoked Potentials MotorTranscranial Magnetic StimulationElectric StimulationTranscranial magnetic stimulationElectrophysiologyReference Values; Humans; Cerebellum; Neural Inhibition; Electric Stimulation; Cerebellar Cortex; Purkinje Cells; Motor Cortex; Evoked Potentials Motor; Adult; Neural Pathways; Transcranial Magnetic Stimulation; Synaptic Transmission; Female; Functional Laterality; Male; Reaction Time; Cerebellar Nucleimedicine.anatomical_structurenervous systemMotorCerebellar NucleiTMSCerebellar cortexSilent periodSettore MED/26 - NeurologiaFemalePrimary motor cortexPsychologyNeurosciencepsychological phenomena and processesMotor cortexNeuroscience letters
researchProduct